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An analytical formula for the structure factor of Penrose tiling in the cluster

approach was derived and tested. Probability distributions obtained for each

Penrose position allow the number of different atoms that can decorate the

cluster to be found. Calculations were performed in the average-unit-cell

approach for Gummelt’s cluster of 33 atoms, divided into three independent

groups of atoms, and a kite cluster of 17 atoms, divided into seven independent

groups.

1. Introduction

In quasicrystals, certain characteristic and frequently occur-

ring groups of atoms called clusters can be found. A recent

review of coverings of quasiperiodic sets was published by

Kramer & Papadopolos (2003). The reader can find there

references to many papers on this subject, among them also

references to the most fundamental works of Steinhardt &

Jeong (1996), Gummelt (1996) and Jeong & Steinhardt (1997),

and many others: Baake et al. (1990), Duneau (1995), Janot

(1997), Cotfas & Verger-Gaugry (1997), Urban (1998), Ben-

Abraham & Gähler (1999), Kramer (1999), Gähler (2000),

Gratias et al. (2000, 2001), Papadopolos & Kasner (2001), who

have contributed enormously to the field of covering. It is

possible to cover the entire quasicrystalline structure by some

types of clusters. For instance, for Penrose rhombus tiling it is

a set of atoms lying within a regular decagon called a cart-

wheel decagon which covers completely the whole structure.

As some atoms belong to different neighbouring clusters, it is

important to determine the ways clusters overlap. For the

cartwheel decagons, matching rules were first introduced by

Gummelt (1996). Gummelt’s cluster consisting of 33 atoms is

shown in Fig. 1. We also used a smaller cluster, called a ‘kite

cluster’ with only 17 atoms, also marked in Fig. 1. Both clusters

cover the rhombic Penrose tiling but with different degrees of

covering (thickness of covering). Great overlap between the

neighbouring clusters limits the possibility of decoration by

different atoms. In that sense, Gummelt’s cluster has much less

freedom for decoration by different atoms than the kite

cluster.

When calculating the diffraction pattern of quasicrystals,

one should remember that ‘the naive approach to Fourier

theory of clusters fails: owing to overlap, the Fourier transform

of a set of overlapping clusters cannot be expressed in terms of

the Fourier transform of a single cluster together with the

transformation of the quasiperiodic distribution of the centers

of the clusters’ (Kramer & Papadopolos, 2003, p. 18). In this

paper, we calculate the probability distribution (over the

whole quasicrystalline structure) of individual atoms forming

the cluster in an average-unit-cell approach (Wolny, 1998).

These probabilities allow calculation of the structure factor

and then the diffraction pattern for the studied quasicrystal.

The analysis is conducted for some characteristic types of

cluster decoration (for example, for non-decorated Penrose

tiling). For these types, we calculate the formulas for structure

factors. Finally, we discuss the applications of the obtained

formulas in the determination of unknown quasicrystalline

structure (with arbitrary decoration of the cluster) from a

measured diffraction pattern.

In this paper, a statistical approach to the discussed struc-

ture is used. In the physical space it leads to the so-called

average unit cell (Wolny, 1998; Wolny et al., 2002; Kozakowski

& Wolny, 2005). Such a cell represents the probability distri-

bution of reduced atomic distances, i.e. the atomic distance

with respect to the reference lattice. The reference lattice in

two dimensions is a periodic set of parallel lines perpendicular

to a chosen scattering vector k, with a periodicity constant

Figure 1
Gummelt’s cluster consisting of 33 atoms placed inside a regular decagon.
The kite cluster consisting of 17 atoms (big filled circles) is also shown in
the figure (thick lines). These clusters, in ten different orientations, cover
the rhombic Penrose tiling (thin lines). The clusters presented in the
figure are called [00001] clusters. The vector pointing from atom 1 to atom
17 is directed along the [00001] direction (the x direction in the figure).



equal to � = 2�/k. The structure factor for the scattering vector

k and its higher harmonics are then given by the Fourier

transform of the average unit cell. When raised up to higher

dimensions, the average unit cell becomes an atomic surface

(see also Fig. 2). Such interpretation of the atomic surface

means that any point of this surface (in the perp-space)

represents a particular combination of surrounding atoms in

physical space. Similar interpretation of the atomic surface

was also given by Gratias (2001). From this point of view, the

two objects, the average unit cell in physical space and the

atomic surface in perp-space, are fully equivalent. In the cut-

and-project approach to quasicrystals, instead of the atomic

surface one uses a window function equivalently. When

covering the discrete point sets (vertex set of Penrose tiling), it

is easier to perform any calculation of the structure factor in

perp-space and that was done for 33/17 atom clusters. After

the calculations in higher-dimensions, an oblique projection

was used to write the final formula for the structure factor in

physical space. This is because the physical space is more

natural for the description of any decorations (Kozakowski &

Wolny, 2005). Usually, the decorating atoms and their atomic

surfaces look very complicated in perp-space and rather

simple in physical space. The extension of the derived formula

for the structure factor of the complete kite cluster (i.e. behind

the 17-atom cluster) is straightforward in physical space only.

There is no mathematical proof for the covering of a vertex

set of Penrose tiling by the 17-atom cluster used in this paper.

However, such covering was checked numerically for several

thousand atoms. Additionally, the obtained atomic surfaces

for vertices fully cover the well known atomic surface for a

vertex set of Penrose tiling. Finally, the derived formula for the

diffraction peak intensities fully agrees with the calculated

diffraction patterns for different subsets of atoms used for this

checking.

2. Atoms in clusters – statistical approach

In this section, we assume that atoms are placed at the corners

of rhombic Penrose tiling. For the discussed Gummelt and kite

clusters, there are 33 and 17 atoms, respectively (Fig. 1). To

calculate the structure factor, one needs to know the distri-

bution of atomic positions for a particular cluster, either in

physical space [average-unit-cell approach (Wolny, 1998)] or

in perpendicular space on the atomic surface (higher-dimen-

sional approach). As has already been shown (Wolny et al.,

2002; Kozakowski & Wolny, 2005), for perfect Penrose tiling

these two approaches are completely equivalent. The average-

unit-cell approach can be, however, easily extended to

imperfect structures including phonons and phasons and some

other defects. In this paper, we are dealing with perfect tilings

only and the two approaches are used alternatively in an

equivalent way. The calculated probability distributions in the

inner (perp) and the physical spaces are shown in Fig. 2 for

atom 1 of the kite cluster (Fig. 1). For these calculations, 1456

atomic clusters were used. The atomic positions in the average

unit cell were plotted using open circles and using stars in the

inner space. These two distributions have triangular shapes

and correspond to one other. The average-unit-cell distribu-

tion can be obtained by oblique projection of the corre-

sponding atomic surface (Steurer & Haibach, 1999; Cervellino

& Steurer, 2002; Wolny et al., 2002). Analytical calculations

performed for atom 1 placed at the corner of the thick

rhombus gives a triangular distribution as shown in Fig. 3. The

area of the shadowed triangle (P�, see also Appendix B) is �4

times smaller than the area of the triangle marked by 1 in Fig. 3

and it corresponds to the distribution of the vertex of the big

rhombus in the rhombus Penrose tiling (Kozakowski & Wolny,

2005). This conclusion is not surprising as soon as one

recognizes the similarity of the kite cluster to the �2 inflated

Penrose tiling. The triangular distribution is obtained as a

common part of a small pentagon (for atom 1 placed at z = 1)

and all the other 16 atomic distributions appropriately shifted

by Dr? and �z (Table 1). It can be shown that only four
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Figure 3
Distribution of atomic positions for atom 1 of the [00001] cluster. For
rhombic tiling, the distribution is uniform in the triangle also marked by 1
(Kozakowski & Wolny, 2005). For the kite cluster, the distribution is
described by the shaded triangle. The ratio of surfaces of those triangles
equals �4.

Figure 2
Average unit cell for atom 1 of the [00001] cluster shown in physical and
perpendicular spaces. Open circles (physical space) and stars (perp-
space) represent 1456 atoms used in the calculations. A uniform
distribution of atomic positions is visible on both spaces.



distributions (i.e. for four neighbouring atoms 1, 2, 4 and 7)

fully determine the requested triangular area. The degree of

covering (�) is proportional to the ratio of ten differently

oriented triangle areas, 10P�, and the atomic surface area,

PAS, multiplied by the number of atoms in the cluster (NC),

which gives:

� ¼ NC

10P�

PAS

¼
NC

�
: ð1Þ

Symbol � describes the effective number of atoms in the �2

inflated rhombic tiling and it is given by the equation

� = 5� + 3� 11.09 (this value is derived in the next section; see

also Appendix B). For the kite cluster, this leads to �17 � 1.53.

A similar approach to Gummelt’s cluster, with 33 atoms, gives

�33 � 2.98. It is obvious that the effective degree of covering is

proportional to the number of atoms composing the cluster.

For tiling by two rhombi, a thick one and a thin one, the

effective thickness is equal to one. For covering by an infinitely

big cluster, the degree of covering goes to infinity.

Knowing the probability distribution of individual atoms in

physical space (average-unit-cell approach), one can extend

this to higher dimensions (for more details, see Wolny et al.,

2002; Kozakowski & Wolny, 2005), getting the distribution on

the atomic surface (Fig. 4). For all ten equivalent directions of

the cluster and 17 different atoms, one covers the inner space

with a thickness equal to �17. After tedious, but not very

complicated, calculations, one obtains the following results.

The atomic surface splits into seven polygons marked in Fig. 5

by Ti (i = 1–7). All of them, except for T1, are triangles. Fig. 5

shows two polygons, T1 and T2, lying on the small pentagon

(z = 4) of the atomic surface and five polygons, T3–T7, lying on

the big pentagon (z = 2). The T polygons consist of distribu-

tions of particular atoms, following the rules given in Table 3 in

Appendix C. To describe the position in the perp-space, the

notation in braces is used, which means that the coordinates

are given in the units of s � ðsx; syÞ ¼ ð
1
2 ;

1
2 ½� þ 2�1=2Þ. For any

point written as fx?1; y?1g, the corresponding perp-space

coordinates are equal to x? ¼ x?1sx; y? ¼ y?1sy.

The two chosen atoms belonging to different polygons Ti

will never coincide in the Penrose tilings. This means that their

positions can be occupied by different types of atoms. Even if

T6 and T7 consist of atoms that do not overlap in the tiling,

owing to symmetry reasons it can be supposed that the

occupying atoms are of the same type. This means that the

cluster can be decorated by seven (or six for symmetrical

distributions) different atoms placed at Penrose positions.
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Figure 4
Probability distributions calculated in the perp-space (vertex atomic
surfaces) for 17 atoms of the [00001] kite cluster. The shaded triangles
represent the atomic surfaces of particular vertices of the cluster.

Figure 5
After averaging over ten equivalent directions, the obtained atomic
surface splits into seven disjoint polygons Ti symmetrically arranged on
the pentagons. Atoms belonging to different polygons never overlap for
the whole Penrose tiling. For practical reasons, the tetragon T1 has been
divided into two triangles.

Figure 6
Decoration of Penrose tiling by different atoms. Only three different
atoms can be used to cover the structure by Gummelt’s clusters (a) and
seven different atoms by kite clusters (b). The thin lines show the �2

inflated Penrose rhombic tiling, the thick lines covering by clusters.

Figure 7
When shifting atoms 13 and 14 as is shown in the figure, one obtains two
�2 inflated rhombi: thick and thin.



Similar calculations performed for Gummelt’s cluster leads to

only three different atoms as is shown in Fig. 6. In this case, the

two polygons T1 and T2 (Fig. 5 for z = 4) combine into one

polygon for a small pentagon. For a big pentagon, T3 remains

unchanged and the other four triangles, T4 – T7, are combined

into a common polygon. One can easily see that as the cluster

gets bigger the degree of covering increases but the number of

different atoms that can be placed at the Penrose positions

decreases. For an infinitely big cluster, there is only one type of

atom that can be used for decoration of Penrose positions. Of

course, there are infinitely many positions for different

decorations of atoms behind the perfect Penrose positions.

One gets more freedom for tiling the structure with two

rhombi: a big and a small one, with edges �2 longer than the

original tiling (Fig. 7). Such an artificial cluster consists of eight

atoms decorating the thick rhombus and five atoms for the

thin one. However, the number of thin rhombi is � times

smaller than the others, so the effective number of decorating

atoms is equal to m = 8 + 5/� � 11.09, giving the thickness of

covering equal to 1. There are common edges between the

rhombi and from Fig. 7 it is evident that the number of

different atoms is equal to nine. The inner atoms of thin

rhombi (Nos. 10 and 14) can be completely different from the

other seven decorating atoms of the thick rhombus. Finally,

one can plot the dependence of the number of different

decorating atoms versus the number of atoms forming the

cluster (proportional to the degree of covering). For the three

different clusters, an almost exponential dependence is

observed (Fig. 8).

3. Diffraction patterns

To index the diffraction pattern of modulated structures, one

has to choose some scattering vectors (we call them k vectors)

for the main reflections and also some modulation vectors

(called q vectors) for the satellite peaks. For Penrose tiling,

one needs two k vectors, k1 and k2, and also two q vectors,

q1 and q2 (Wolny et al., 2002; Kozakowski & Wolny, 2005).

Vectors k1 and q1 are directed at an angle of 72� to the x axis,

and vectors k2 and q2 are directed at an angle of �72� to the x

axis. Equal lengths of q vectors are �-times shorter than k

vectors. For the rhombic Penrose tiling with edge lengths

equal to 1:

jk1j ¼ jk2j ¼
4�

5
� � k0 � 4:067;

jq1j ¼ jq2j ¼
4�

5
¼

k0

�
� 2:513:

ð2Þ

An arbitrary diffraction peak for scattering vector k can then

be expressed as a linear combination of ki and qi (i = 1, 2) with

indices ni and mi appropriately and its components (kx, ky) are

equal to:

kx ¼ k0c1 nx þ
mx

�

� �
ð3Þ

ky ¼ k0s1 ny þ
my

�

� �
; ð4Þ

where c1 = cos(2�/5), s1 = sin(2�/5),

nx � n1 þ n2; mx � m1 þm2;

ny � n1 � n2; my � m1 �m2: ð5Þ

For the scattering vector given above, one can calculate the

structure factor in an average unit-cell approach as follows

(Wolny et al., 2002; Kozakowski & Wolny, 2005):

F ¼

ZZZZ
Pðu1; u2; v1; v2Þ exp

n
ik0

h
n1u1 þ n2u2

þ
1

�
ðm1v1 þm2v2Þ

io
du1 du2 dv1 dv2; ð6Þ

where P(u1, u2, v1, v2) is a probability distribution that defines

an average unit cell for the structure. For the Cartesian

coordinates, one gets (ux, uy) and (vx, vy), which leads to the

following:

u1 ¼ c1ux þ s1uy; v1 ¼ c1vx þ s1vy;

u2 ¼ c1ux � s1uy; v2 ¼ c1vx � s1vy:
ð7Þ

Then one can write

F ¼

ZZZZ
Pðux; uy; vx; vyÞ exp

n
ik0

h
c1

�
nxux þmx

vx

�

�
þ s1

�
nyuy þmy

vy

�

�io
dux duy dvx dvy: ð8Þ

Formula (8) is the same as (6) but written for Cartesian

coordinates, which has a very practical meaning.

To calculate the structure factor, one has to know the

probability distribution P(ux, uy, vx, vy). For each atom of the

17-atom cluster, the distribution is non-zero inside the triangle

�lj, where l = 1–17 indicates the atom’s number in the cluster

and j = 1–10 describes the cluster orientation (see also Fig. 1).

To get these triangular distributions, one has to project the

distributions on the atomic surface onto physical space. As has

already been shown (Kozakowski & Wolny, 2005), such an

oblique projection for Penrose tiling is given by
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Figure 8
Number of different atoms versus number of atoms in the clusters. Three
points corresponding to: Gummelt’s cluster of 33 atoms (3 of them
independent), kite cluster of 17 atoms (7 atoms independent) and two
hypothetical rhombi (Fig. 7) with about 11 effective atoms (9 are
independent) are shown in the figure. The dashed curve is only a guide to
the eye, representing the exponential dependence. The inset is the same
but shown on a different scale.



u ¼ Ar?;

where

u �
ux � 2z

uy

� �
; r? �

x?
y?

� �
; A ¼

�1 0

0 ��3

� �
: ð9Þ

The probability distribution is non-zero along the line

v ¼ ��2u; ð10Þ

where

v �
vx þ �z

vy

� �
:

Using the above, one can also write

F ¼
P17

l¼1

fl

P10

j¼1

expði’zÞ
RR
�lj

expðij � uÞd2u; ð11Þ

where

’z ¼ zð� � 1Þ½kx þmxð3� �Þk0� ð12Þ

� ¼
kx �mxð2� � 1Þc1k0

ky �myð2� � 1Þs1k0

 !
ð13Þ

and fl (l = 1–17) are the atomic form factors.

As all the distributions �lj are organized in independent

polygons Ts (s = 1–7) on the atomic surface, one can essentially

reduce the formula for the structure factor:

F ¼
P5

j¼1

BjðkÞ; ð14Þ

where

BjðkÞ ¼ expði4’1Þ
P2

l¼1

�ljðjÞ þ expði2’1Þ
P7

l¼3

�ljð�Þ ð15Þ

’1 ¼ ’z¼1 ¼ ð� � 1Þ½kx þmxð3� �Þk0� ð16Þ

�ljðjÞ � fl

RR
Plj

expðij � uÞ d2u: ð17Þ

Plj are the polygons Tl in j orientation ( j = 1–5) when projected

onto physical space.

The above formulas give the correct value of structure

factor for any scattering vector given by (3) and (4). For a

continuous variable of scattering vector, these formulas lead

to the so-called envelope functions connecting diffraction

peak intensities for a particular index of satellites (Wolny,

1998).
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Figure 10
Diffraction pattern along the x direction for the second type of
decoration, i.e. all the atoms belonging to the T4 triangular distribution
(numbered 3, 8, 11, 13 and 16) have zero amplitude of atomic scattering.
The solid line is the diffraction pattern calculated for a big enough set
of atoms, circles with bars represent results of the average-unit-cell
calculations (14).

Figure 11
Diffraction pattern along the x direction for the third type of decoration,
i.e. all the atoms belonging to the T5 triangular distribution (numbered 7)
have a zero amplitude of atomic scattering. The solid line is the
diffraction pattern calculated for a big enough set of atoms, circles with
bars represent results of the average-unit-cell calculations (14).

Figure 9
Diffraction patterns along the x (top) and y (bottom) directions
calculated numerically for a set consisting of about 125 000 atoms (solid
line) and from equation (14) (open circle with a bar) for the kite cluster
decorated uniformly, fl = 1 (l = 1––17), i.e. the first type of decoration.
Full agreement between direct numerical calculations and analytical
results obtained for the cluster’s covering is observed.



Several tests were performed to check the correctness of the

derived formula for the structure factor (14). To do that, the

diffraction patterns were calculated (from the proposed

formula for the structure factor and also directly by Fourier

transform using a big enough set of atoms) and compared for

different decorations of Penrose tiling. Some of the results are

shown in Figs. 9–11. To calculate the diffraction patterns, the

following decorations of Penrose tiling were used:

(i) each vertex was decorated by a similar atom with the

same atomic form factor, i.e. fl = 1 (l = 1–17);

(ii) five atoms numbered as 3, 8, 11, 13 and 16 belonging to

the T4 triangular distribution did not contribute to the

diffraction pattern, i.e. f3 = f8 = f11 = f13 = f16 = 0, and for all the

others the atomic form factors were equal to 1;

(iii) all the atomic form factors, except f7 = 0, were equal to

1; atom 7 belonged to triangular distribution T5.

The diffraction pattern along the y direction is almost insen-

sitive to the type of decoration used and it has been presented

only once in Fig. 9. Observed agreement between peak

intensities obtained in two different ways (direct Fourier

transform and average unit-cell approach applied for clusters)

fully supports the correctness of the presented idea.

4. Arbitrary decoration of cluster

Above, we have solved the problem of the allowed decoration

of the corners of rhombi in the Penrose tiling. To reconstruct

the rhombic Penrose tiling, it is sufficient to use a cluster of 17

atoms (kite cluster). To solve the problem of arbitrary

decoration of the tiling, one needs to use the full kite cluster

(Fig. 12), i.e. the cluster of 17 Penrose positions with four extra

triangular regions on the two wings of the kite. In this figure,

seven independent subregions are also shown. Decoration of

individual subregions should be the same in the whole cluster.

Any decorating atom can be included in the structure factor

by an appropriate phase shift (given by the product k � r) as

was shown by Kozakowski & Wolny (2005) for decorated

rhombi.

5. Conclusions

In this paper, for the first time, an analytical expression has

been derived for the structure factor of Penrose tiling covered

by atom clusters. Using a statistical approach (average unit-

cell approach), it was possible to find the probability distri-

butions of atoms decorating the cluster. Two clusters were

thoroughly discussed: the Gummelt cluster, consisting of

33 atoms, and the kite cluster, of 17 atoms. Triangular prob-

ability distributions of positions of individual atoms have been

found in the average unit cell and equivalently on the atomic

surface. Those distributions calculated for all the decorating

atoms and ten different orientations group into several

disjoint regions (three for Gummelt’s cluster and seven for the

kite cluster). This allows us to find that for the smaller cluster

there are seven independent atomic positions (reduced to six

for a symmetrical cluster) that can be occupied by atoms

independently. For Gummelt’s cluster, the number of different

decorating atoms is equal to three. Knowing the probability

distributions of atomic positions, one can easily calculate the

structure factor of the Penrose tiling in the cluster approach.

Appropriate formulas were derived and compared with the

direct numerical calculations for the complex of about 125000

atoms. Full agreement between the calculations (direct and

the average-unit-cell approach) supports the correctness of

the obtained formulas for the structure factor. For the kite

cluster, seven types of regions can be found, which can be

decorated independently. As the structure factor has been

obtained in physical space, it is not very difficult to extend the

derived formula to arbitrary decorated clusters. One has only

to include the appropriate phase shifts for decorating atoms as

was already shown by Kozakowski & Wolny (2005) for

decorated rhombi.

Several tests have been performed for differently decorated

Penrose tilings. The obtained diffraction patterns fully support

the correctness of the ideas presented. One should notice that,

even though the used decorations were completely different,

the obtained diffraction patterns do not look much different

(Figs 9–11). Only from the intensities of rather weak diffrac-

tion peaks along the x direction can one distinguish between

different decorations. From the experimental data, it could be

very difficult to solve the structure of quasicrystals without

knowing the exact formula for the structure factor of arbitrary

decorated clusters.

APPENDIX A
For any position given in a higher-dimensional space (five-

dimensional) by [a1, a2, a3, a4, a5], one can calculate its perp-

space components using the following equations:

x? ¼
1
2½��; � � 1; � � 1;��; 2� � ½a1; a2; a3; a4; a5� ð18Þ

y? ¼
ð�þ2Þ1=2

2 ½� � 1;�1; 1; 1� �; 0� � ½a1; a2; a3; a4; a5�: ð19Þ
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Figure 12
Kite cluster with seven regions marked that can be decorated
independently by atoms.



If we assume that the first atom lies at the origin, the coor-

dinates of all 17 atoms are given in Table 1.

APPENDIX B
Degree of covering

The probability distribution of atomic positions in the cluster

[00001] has a triangular shape (Fig. 3) with vertices given in

perp-space in Table 2 (in units of s).

The area of the triangles is then given by

P� ¼
7� � 11

4
ð� þ 2Þ1=2 � 0:15514: ð20Þ

The area of the big pentagon of the atomic surface is

PB ¼
ð25þ 10� 51=2Þ1=2

4
ð� þ 2Þ � 6:2247: ð21Þ

The area of the small pentagon PS = PB/�2, so finally the area

of the full atomic surface is

PAS ¼ 2ðPS þ PBÞ ¼ 2 1þ
1

�2

� �
PB � 17:205: ð22Þ

The degree of covering is proportional to the number of

different triangles [number of decorating atoms multiplied by

the number of different orientations (10)] and is then given by

�17 ¼
17� 10� P�

PAS

� 1:53; �33 ¼
33� 10� P�

PAS

� 2:98:

ð23Þ

The values for the kite cluster �17 and Gummelt’s clusters �33

are the same as obtained in the text.

APPENDIX C
For practical calculations, it is more convenient to split the

tetragon T1 into two triangles T1A and T1B. Then one obtains

eight triangular distributions as given in Table 3. When

projected onto physical space, there are eight triangles Plj (l =

1–8) in five different orientations ( j = 1–5). Fourier transform

over a triangular area can be easily calculated using the

following analytical formula:RR
P

expðij � uÞ d2u ¼
1

�y

½D12ðE2 � E1Þ þD23ðE3 � E2Þ

þD31ðE1 � E3Þ�; ð24Þ

where P is a triangle with vertices at positions up (p = 1–3);

Dlm ¼
1

�x þ �yalm

; Ep ¼ expðij � upÞ ð25Þ

and alm is a linear coefficient of the line going through vertices

ul and um.
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Table 1
Relative coordinates of 17 atoms placed at Penrose positions of the kite
cluster [00001] shown in Fig. 1.

The origin coincides with the first atom. In square brackets, the higher-
dimensional coordinates are indicated. In braces {}, the perp-space coordinates
are given, Dr? � fx?; y?g in the relative units of vector s.

Atom no. D5 coordinates �z Dr?
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Table 2
Perp-space coordinates of vertices of triangular distributions for each of
the 17 atoms of the kite cluster [00001].

Atom no. Vertex 1 Vertex 2 Vertex 3

1 {2, 0} {��1, 2��3} {��1, 3�2�}
2 {�+1, �1} {2��2, 2(1��)} {2��2, 2(��2)}
3 {2�, 0} {��3, 2��3} {3��3, 3�2�}
4 {�+1, 1} {2��2, 2(��1)} {2��2, 2(2��)}
5 {�, ��1} {2��3, 3��4} {2��3, 2��}
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Table 3
Perp-space positions of vertices of polygons T.

Distributions of 17 atoms of the kite cluster split into seven non-overlapping
polygons that are triangles except for T1 (a tetragon). For the simplicity of
further calculations, the tetragon T1 has also been split into two triangles T1A

and T1B.

Atomic numbers Vertex 1 Vertex 2 Vertex 3
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T3 9, 12, 15 {0, 0} {2(��1), 0} {2��,1��}
T4 3, 8, 11, 13, 16 {�+1, �1} {2(��1), 0} {2��,1��}
T5 7 {2��, 1��} {2��, ��3} {2(��1), 2(1��)}
T6 2, 14 {2��, 1��} {�+1, �1} {2(��1), 2(1��)}
T7 4, 10 {2(��1), 0} {�+1, 3�2�} {�+1, �1}
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